یادگیری عمیق با MATLAB

از {{model.count}}
تعداد
نوع
ویژگی‌های محصول
  • مولفین: phil kim / مترجم : علی توتونچیان
  • ناشر: کیان
  • تعداد صفحات: 167
  • سال و نوبت چاپ: دوم 1403
فروشنده فروشنده: WWW.sohabook.ir
آماده ارسال ناموجود
250,000 تومان
  • {{value}}
کمی صبر کنید...

دوم تا چهارم بر آنها تمرکز می‌کنیم. از آنجایی که یادگیری عمیق نوعی از یادگیری ماشین است که از شبکه عصبی استفاده می‌کند، شبکه عصبی و یادگیری عمیق قابل تفکیک نیستند. فصل دوم با مبانی شبکه‌های عصبی، شامل مبانی عملکرد، معماری و قوانین یادگیری آغاز می‌شود. همچنین دلیل سیر تکاملی از شبکه عصبی تک‌لایه به شبکه عصبی چندلایه را نیز ارایه می‌کند. فصل سوم الگوریتم پس‌انتشار را معرفی می‌کند که قانون یادگیری مهمی در شبکه‌های عصبی است و همچنین در یادگیری عمیق نیز به کار می‌رود. این فصل توضیح می‌دهد که ارتباط میان توابع هزینه و قوانین یادگیری چیست و چه توابع هزینه‌ای به طور گسترده در یادگیری عمیق به کار می‌روند.فصل چهارم چگونگی استفاده از شبکه‌های عصبی در مسایل رده‌بندی را نشان می‌دهد. به دلیل اینکه رده‌بندی یکی از مهم‌ترین کاربردهای یادگیری ماشین است، فصل مجزایی را به آن اختصاص داده‌ایم. برای مثال تشخیص تصاویر که یکی از اصلی‌ترین کاربردهای یادگیری عمیق است، یک مساله رده‌بندی محسوب می‌شود.

محصولات مرتبط

مولفین
phil kim / مترجم : علی توتونچیان
ناشر
کیان
تعداد صفحات
167
سال و نوبت چاپ
دوم 1403
قطع و نوع جلد
وزیری / شومیز
شابک
9786003072053

دیدگاه خود را بنویسید

  • {{value}}
این دیدگاه به عنوان پاسخ شما به دیدگاهی دیگر ارسال خواهد شد. برای صرف نظر از ارسال این پاسخ، بر روی گزینه‌ی انصراف کلیک کنید.
دیدگاه خود را بنویسید.
کمی صبر کنید...